Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays.

نویسندگان

  • Ying Pan
  • Ye Tao
  • Guangzhao Qin
  • Yuriy Fedoryshyn
  • Shyamprasad N Raja
  • Ming Hu
  • Christian L Degen
  • Dimos Poulikakos
چکیده

We report electronic and phononic transport measurements of monocrystalline batch-fabricated silicon nanowire (SiNW) arrays functionalized with different surface chemistries. We find that hydrogen-terminated SiNWs prepared by vapor HF etching of native-oxide-covered devices show increased electrical conductivity but decreased thermal conductivity. We used the kinetic Monte Carlo method to solve the Boltzmann transport equation and also numerically examine the effect of phonon boundary scattering. Surface transfer doping of the SiNWs by cobaltocene or decamethylcobaltocene drastically improves the electrical conductivity by 2 to 4 orders of magnitude without affecting the thermal conductivity. The results showcase surface chemical control of nanomaterials as a potent pathway that can complement device miniaturization efforts in the quest for more efficient thermoelectric materials and devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping

A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamb...

متن کامل

Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires

Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths ...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Thermal conductivity in porous silicon nanowire arrays

The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For Si...

متن کامل

Preparation of free-standing nanowire arrays on conductive substrates.

By combining supercritical drying technique with AAO template-assisted electrodeposition, noncollapsed, vertically aligned, and free-standing nanowire arrays on a conductive Au film have been fabricated. We also demonstrate that these free-standing nanowire arrays can be feasibly used for fabricating nanowire-based electrically driven devices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2016